PREPARATION OF 3α - AND 3β -(ω -AMINOALKOXY)- 7α ,12 α -DIHYDROXY- 5β -CHOLANOIC ACID ESTERS: VERSATILE SHUTTLES FOR DRUG TARGETING

G. Wess*, W. Kramer, A. Enhsen, H. Glombik, K.-H. Baringhaus K. Bock, H. Kleine, W. Schmitt

Hoechst AG, Pharma Forschung, Postfach 800320, D-6230 Frankfurt-80

Abstract: Simple methodology for the preparation of 3α - and 3β -(ω -aminoalkoxy)-cholanoic acid esters 7, 9, 11, 13 and 15 is described starting from readily available bile acid derivatives. Protecting groups are not required.

Bile acid-drug conjugates 1 might be useful for liver selective drug targeting. In these molecules the bile acid part is supposed to serve as a drug shuttle providing molecular recognition and transport by the specific iteal and hepatic bile acid transport systems. For the design of molecules 1 modified bile acid esters 2 are required that have not yet been described. We wish to report efficient methodology for the preparation of these versatile building blocks giving entry into the 3α - and 3β -series.

For the synthesis of 3β -amine 7 alcohol 4 readily prepared from cholic acid^{3a} was transformed quantitatively to mesylate 5 using 1.05 equiv. methanesulfonyl chloride in pyridine at 0°C for 30 min. and at room temperature for 1 h. Without further purification 5 was reacted with 1.15 equiv. sodium azide in DMF at 90°C for 3.5 h to give 6 in 82% yield after chromatography (silica gel, n-heptane/ethyl acetate = 3:7). Catalytic hydrogenation with Pd/C in methanol at room temperature gave 7^4 in 70% yield after chromatography (silica gel, ethyl acetate/ethanol/triethylamine = 5:1:1). The 3α -isomer 9^4 was prepared from alcohol 8^3 in 75% total yield following the same sequence of reactions. For the synthesis of amines 11, 13 and 15 (table 1) alcohols 10, 12 and 14 served as starting materials.

no	R ¹	R ²	R ³	no	R ¹	R ²	R ³	yield ^a
10 ^{3b}	н	O(CH ₂) ₃ OH	Me	114	н	O(CH ₂) ₃ NH ₂	Me	55%
1230	O(CH ₂)3OH	Н	Me	13 ⁴	O(CH ₂) ₃ NH ₂	н	Me	58%
14 ⁵	O(CH ₂) ₅ OH	н	t-Bu	15 ⁴	O(CH ₂) ₅ NH ₂	н	t-Bu	58%

(a) total yield following the sequence of reactions according to the preparation of 7.

This sequence of reactions requires no protecting groups and offers an easy access to a variety of modified bile acids. The methodology can be extended to functionalize steroidal positions 7 and 12. Besides their use as shuttle molecules for drug targeting amines 2 are versatile building blocks for various applications in bile acid chemistry.

Acknowledgments: We wish to thank Dr. Fehlhaber and Dr. Kogler for analytical support.

REFERENCES AND NOTES

- Kramer, W.; Wess, G.; Schubert, G.; Bickel, M.; Girbig, F.; Gutjahr, U.; Kowalewski, S.; Baringhaus, K.-H.; Enhsen, A.; Glombik, H.; Müllner, S.; Neckermann, G.; Schulz, S.; Petzinger, E., J. Biol. Chem. 1992, 267, in press.
- 2. see following paper.
- (a) Wess, G.; Kramer, W.; Bartmann, W.; Enhsen, A.; Glombik, H.; Müllner, S.; Bock, K.; Dries, A.; Kleine, H.; Schmitt, W., Tetrahedron Lett. 1992, 33, 195-198.
 (b) EP 0417725 A2.
- Characteristic analytical data:
 - 7 amorphous solid, mp 50-55°C; ¹H-NMR 270 MHz (CDCl₃) δ 0.68 (s, 3 H), 0.90 (s, 3 H), 0.97 (d, J = 6.4 Hz, 3 H), 1.10 2.45 (m, 24 H), 2.82 (t, J = 4.8 Hz, 2 H), 3.38 (t, J = 4.8 Hz, 2 H), 3.53 (m, 1 H), 3.67 (s, 3 H), 3.83 (m, 1 H), 3.97 (m, 1 H); 9 amorphous solid, mp 55-60°C; ¹H-NMR 270 MHz (CDCl₃) δ 0.70 (s, 3 H), 0.91 (s, 3 H), 1.00 (d, J =
 - 9 amorphous solid, mp 55-60°C; ¹H-NMR 270 MHz (CDCl₃) δ 0.70 (s, 3 H), 0.91 (s, 3 H), 1.00 (d, J = 6.0 Hz, 3 H), 1.05 2.45 (m, 24 H), 2.83 (t, J = 4.8 Hz, 2 H), 3.12 (m, 1 H), 3.50 (t, J = 4.8 Hz, 2 H), 3.68 (s, 3 H), 3.85 (m, 1 H), 3.98 (m, 1 H);
 - 11 amorphous solid, mp 47-50°C; 1 H-NMR 270 MHz (CDCl₃) δ 0.69 (s, 3 H), 0.90 (s, 3 H), 1.00 (d, J = 5.2 Hz, 3 H), 1.05 2.45 (m, 26 H), 2.91 (t, J = 6.0 Hz, 2 H), 3.08 (m, 1 H), 3.58 (t, J = 6.0 Hz, 2 H), 3.67 (s, 3 H), 3.83 (m, 1 H), 3.96 (m,1 H);
 - 13 amorphous solid; ¹H-NMR 270 MHz (CDCl₃) 8 0.70 (s, 3 H), 0.91 (s, 3 H), 0.99 (d, J = 6.0 Hz, 3 H), 1.05 2.45 (m, 26 H), 2.80 (t, J = 7.2 Hz, 2 H), 3.42 (m, 2 H), 3.51 (m, 1 H), 3.68 (s, 3 H), 3.85 (m, 1 H), 3.99 (m, 1 H);
 - 15 amorphous solid; ¹H-NMR 270 MHz (CDCl₃) & 0.70 (s, 3 H), 0.91 (s, 3 H), 0.98 (d, J = 6.0 Hz, 3 H), 1.05 2.47 (m, 39 H), 2.69 (t, J = 7.2 Hz, 2 H), 3.45 (m, 2 H), 3.52 (m, 1 H), 3.86 (m, 1 H), 3.99 (m, 1 H).
- 5. t-Butylester 14 was prepared from the corresponding carboxylic acid³ following the sequence (1) formylation (HCO₂H, cat. HClO₄), (2) acid cloride formation (SOCl₂, toluene), (3) alcoholysis (t-BuOH, pyridine), (4) deformylation (aqueous NaOH).